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§  Significantly improved support for devices (accelerators, 
etc.) OpenMP now provides mechanisms for unstructured 
data mapping, asynchronous execution and also runtime 
routines for device memory management. These routines 
allow for explicit allocation, copying and freeing of memory 
between devices. 

§  Support for doacross loops. A natural mechanism to 
parallelize loops with well-structured dependences is 
provided. 

§  New taskloop construct. Support to divide loops into tasks, 
avoiding the requirement that all threads execute the loop. 

§  Reductions for C/C++ arrays. This often requested feature 
is now available by building on support for array sections. 

OpenMP 4.0/4.5 Feature Overview 
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§  Task and lock hint mechanisms. Hint mechanisms 
can provide guidance on the relative priority of tasks 
and on preferred synchronization implementations. 

§  Thread affinity support. It is now possible to use 
runtime functions to determine the effect of thread 
affinity clauses. 

§  Improved support for Fortran 2003. Users can 
now parallelize many Fortran 2003 programs. 

§  SIMD extensions. These extensions include the 
ability to specify exact SIMD width and additional 
data-sharing attributes. 

OpenMP 4.0/4.5 Feature Overview 
Cont. 
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Before performance portability, we 
need expressibility, and functional 

portability 
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Biggest “surprises” for application 
developers in 4.X 
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int add(int l, int r) { 
    return l + r; 
} 
 
void do_stuff(int a) { 
    #pragma omp target 
    add(a, a); 
} 

Simple Example #1 
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§  All functions called in target regions must be 
marked declare target!

§  Classic routines are not available on the device: 
•  assert 
•  exit 
•  MPI_* 
•  etc. 

§  All user code must be marked, libraries must be 
updated 

In 4.0-4.5: 
All Code Offloaded Must be Marked 
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§  Observation: Many functions that one calls in 
device code may be available in the same 
translation unit, anything with: 
•  static 
•  constexpr 
•  template 

§  Extension: Explicitly allow such functions to not 
be marked, let the compiler do the work 

Future: Automatic Propagation of 
declare target!
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class Vclass {  
 static int bar = 0; 
 virtual int foo() { return 1; }  

}; 
 
void do_stuff() { 

 Vclass a; 
  #pragma omp target map(a) 
 a.foo(); 

} 

Simple Example #2 
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§  Virtual methods on objects instantiated on the 
host likely will not work in device code 

§  STL classes are not marked declare target 
•  They’re not available now and may not be later 

§  Dynamic allocation may be unavailable, or 
severely limited 

In 4.0-4.5: 
Some C++ Features are not Enabled 
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§  Mapping of: 
•  Member variables (especially private) 
•  “this” inside a method 
•  Classes with non-trivial constructors 

§  Objects of classes with static or virtual members 
cannot be mapped 
•  The static members themselves can… 

C++ and Fortran Class Support is 
Under-Specified 
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Simple Example #3 
struct a { int *a, intptr b} a1 = { (int[50]){0}, 5}; 
#pragma omp target 
a1.b = a1.a 
printf(“%p\n”, a1.b); 

Result: NULL… ? 
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§  There are no built-in facilities for deep-copy (yet) 

In 4.0-4.5: Mapping Data can be 
Counter-Intuitive and Tedious 

struct a { int *a, int b} a1 = { (int[50]){0}, 5}; 
#pragma omp parallel for … 

struct a { int *a, int b} a1 = { (int[50]){0}, 5}; 
#pragma omp target teams distribute parallel for 
map(a1, a1.a[50]) … 

Becomes: 
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§  Deep copy will be coming 

§  Annotations, or user-defined mechanisms, will 
allow easier management of complex data 

§  Mapping, by bitwise copy, of objects with these 
are likely to be supported as well: 
•  static members 
•  virtual members 
•  parameters 

Future: 
Mapping and Data Description   
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What does this mean for porting 
applications? 
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§  Many codes will need significant refactoring to 
take advantage of GPUs and others with 
OpenMP 4.5 

§  Upside: Most of these optimizations will also 
make the CPU versions more efficient 

Applications Will Need new 
Programming Patterns 
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§  Functions, classes and structures used in target 
regions must be written to OpenMP or the 
underlying model to be available 
•  Exception: Template or header-based libraries in C++ 

§  Major libraries will need reworks to play nice: 
•  Hypre 
•  ScaLAPACK 
•  HDF 
•  etc. 

Third-Party Library Use Will be Tricky 
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Once a code is ported, is it 
performance portable? 
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§  Using hints to optimize a given platform may 
hurt performance on another platform 

§  At present there is no facility for targeting 
optimizations to a specific platform 

§  Future OpenMP: 
•  Target hints by platform/device 
•  Increase flexibility of some constructs 

Performance Portability is a Concern 
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§  CPUs prefer: 
•  Using simd where possible 
•  Using static but un-chunked schedules 

§  GPUs prefer: 
•  Avoiding simd construct 
•  Using schedule(static, 1)!

Implementations Make Different 
Assumptions 
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Gaps for performance portability 
with OpenMP  4.X 
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§  Deep copy 
§  Support for mapping of polymorphic objects 
§  Data transformation (serialization/

deserialization-like) interface 
§  Mechanisms to support out-of-core streaming 

and pipelining of same 
§  First-class template/lambda support 

Major Follow-ups: Part 1 
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§  Portable interfaces to access and manipulate: 
•  Dependencies, including native mechanisms for same 
•  Target device function pointers 
•  Closure-like constructs for outlined functions 

§  Reduce the dependence on declare target: 
Support inline/template/constexpr 

§  Top-level asynchronous tasking 
§  Event-loop programming model support 

Major Follow-ups: Part 2 
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§  Multi-level memory management (HBM/GDDR/
etc.) 

§  Support for “flexible” parallelism, or perhaps less 
restrictive collapse? 

§  Hints for declare target to express parallelism in 
functions outside the translation unit 

Major Follow-ups: Part 3 




